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Abstract. We study the phenomenon of stickiness in the standard map. The sticky regions are
limited by cantori. Most important among them are the cantori with noble rotation numbers,
that are approached by periodic orbits corresponding to the successive truncations of the noble
numbers. The size of an island of stability depends on the last KAM torus. As the perturbation
increases, the size of the KAM curves increases. But the outer KAM curves are gradually
destroyed and in general the island decreases. Higher-order noble tori inside the outermost
KAM torus are also destroyed and when the outermost KAM torus becomes a cantorus, the size
of an island decreases abruptly. Then we study the crossing of the cantori by asymptotic curves
of periodic orbits just inside the cantorus. We give an exact numerical example of this crossing
(non-schematic) and we find how the asymptotic curves, after staying for a long time near the
cantorus, finally extend to large distances outwards. Finally, we find the relation between the
forms of the sticky region and asymptotic curves.

1. Introduction

The phenomenon of stickiness was observed (Contopoulos 1971) while an effort was made
to numerically find the ‘last KAM curve’ around an island of stability in a Hamiltonian
system of 2 degrees of freedom. While calculating invariant curves further and further
away from the centre of an island, we found an orbit that looked ordered for a long time,
but then its consequents diffused into the large chaotic sea outside the island. Several tests
established that this was real, and not due to the limited accuracy of the calculations. The
most convincing test was the inversion of the orbit after reaching the chaotic sea. The
inverse orbit, after some iterations, was trapped for a long time around the island.

This phenomenon, named ‘stickiness’ by Shirts and Reinhardt (1982), was observed
later by several authors. It is now obvious that stickiness is due to the existence of one or
more cantori with small holes surrounding the island of stability.

Cantori are the ‘remnants’ of KAM tori when these tori are destroyed by increasing
the nonlinearity parameter. They are infinite sets of points that are invariant but nowhere
dense. In fact they are Cantor sets of zero measure. Cantori were found theoretically by
Aubry (1978) and independently by Percival (1979), who gave them their name.

A cantorus forms a countable infinity of gaps. Although it contains uncountably many
points, these have not only zero measure, but also zero Hausdorff dimension (see Meiss
1992 for further discussion and references). In this respect they are like periodic orbits of
infinite period.

Furthermore, cantori can be approached by high-order periodic orbits. In fact both tori
and cantori are characterized by irrational rotation numbers, that can be approximated by
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rationals. The best method to approximate these irrationals is by the successive truncations
of their continued fraction representations.

Greene (1979) conjectured that the last KAM tori are those with ‘noble’ rotation
numbers, i.e. continued fractions

a = [a1, a2, . . .] ≡ 1

a1+ 1
a2+···

(1)

(whereai are integers) that haveai = 1 for all i above a certain orderN . According to
Greene these tori are destroyed when all the periodic orbits with rotation numbers equal to
high-order truncations of a noble number become unstable.

Greene’s conjectures have been verified in many cases up to now. An implementation
of Greene’s approach was given by Contopouloset al (1987) in finding the value of the
nonlinearity parameter,Kc, at which the last KAM torus is destroyed. This was done by
extrapolating the values ofK at which nearby periodic orbits become unstable. We must
stress that the transition to instability for families of periodic orbits (with rotation numbers
truncations of the noble number) occurs for values ofK larger thanKc and these values
tend toKc as the rotation numbers of the corresponding periodic orbits tend to the noble
number. Thus the critical valueKc is theminimumof the transition values ofK for periodic
oribts approaching the critical torus.

The simplest noble number is the golden mean

a = [1, 1, 1, . . .] = 1
2(
√

5− 1) (2)

and according to Greene it is the last to be destroyed, asK increases. However, in some
cases other noble tori may be more robust; in fact the local structure of phase space around
each noble torus may be more important (Contopouloset al 1987) in defining a local critical
value for the destruction of a noble torus.

After a noble torus becomes a cantorus other orbits can cross its gaps and a diffusion
phenomenon appears. This diffusion has been studied by many authors, for example,
Bensimon and Kadanoff (1984) and MacKayet al (1984) developed a theory of diffusion
through cantori for a value of the nonlinearity parameterK slightly above the critical value
Kc. However, for even larger nonlinearityK the gaps of the cantorus increase rapidly with
K and the diffusion through them is quite fast.

The theory of cantori and stickiness has still many unsolved problems (see, e.g. the
review of Meiss 1992). It has been stated, correctly, by some people, that the most basic
approach to these problems is by studying the forms of the asymptotic curves of the unstable
periodic orbits in the sticky region. In fact diffusion through cantori does not occur in a
probabilistic way, as assumed by some models (Markov models, Meiss 1992). It occurs
along particular lobes, formed by the asymptotic curves of the unstable periodic orbits, that
pass through the gaps of cantori. Thus diffusion affects the whole set of points inside a
lobe, and individual points are not affected completely stochastically. However, the problem
of the crossing of the cantori by lobes has only been considered schematically up to now
(Meiss 1992).

A systematic study of the real forms of the lobes in certain simple maps is needed. At
the same time we need the forms of the cantori. A comparison of the two will show how
the lobes cross the gaps to generate diffusion.

In a recent paper (Contopouloset al 1997) we studied the diffusion time in various
parts of a sticky region. The stickiness time seems to depend in general exponentially on
the distance from the last KAM curve around an island. However, very close to the last
KAM curve the stickiness time seems to be superexponential. It is important to explain
these phenomena in terms of the crossing of the cantori by lobes.
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Another phenomenon found in that paper is the appearance of regions of fast diffusion
in the sticky region, where the escape time is relatively short.

In this paper we will answer the following problems. What are the main cantori that
surround a given island of stability and how can we approximate them? (sections 2 and 3).
How does the size of the island depend on the perturbation, and what is the sequence of
the formation of the cantori around it? (sections 4 and 5). How do the various asymptotic
curves of unstable orbits, close to a cantorus, cross this cantorus? (section 6). How can we
delineate the various secondary sticky regions that surround the main sticky region around
an island? (section 7). Finally, our conclusions are summarized in section 8.

2. The sticky regions in a simple model

We study the problem of stickiness in the simple case of the standard map

xi+1 = xi + yi+1 (mod 1) (3)

yi+1 = yi + K

2π
sin(2πxi)

whereK is the nonlinearity parameter.
WhenK = 5 the phase space is mostly chaotic, but contains two symmetric islands of

stability (one of them is shown in figure 1). We consider only every second iteration of
the map (3). Thus, the periodic orbit at (xc ≈ 0.68, yc ≈ 0.36) is considered of period 1.
The island surrounding this stable periodic orbit consists of a set of closed invariant curves
around the periodic orbit and higher-order islands. The sticky region studied in Contopoulos
et al (1997) is a thin layer at the outer edge of the island, and further out there is a large
chaotic sea. Escape from this sticky region takes place after 104–109 iterations.

Figure 1. One of the two islands of stability for the standard map withK = 5. The narrow
dark layer surrounding the island is the main sticky domain. Its boundaries are not well defined
and especially the outer boundaries are fuzzy.
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Figure 2. A second sticky region outside the one of figure 1. This contains consequents of
a chaotic orbit starting in the large chaotic sea (x0 = 0.2, y0 = 0.1, K = 5). Each time the
orbit remains forM > 10 successive iterations inside the ellipse surrounding the island the last
M − 10 consequents are plotted.

However, further outside there is a more extended sticky region (figure 2), where
stickiness lasts for only 10–103 iterations. The points of this sticky region are iterates
(Poincaŕe consequents) belonging to one orbit starting well outside the island, in the chaotic
domain. Such iterates are marked in figure 2 only when the orbit (i.e. the set of consequents)
stays inside an ellipse surrounding the island for more than 10 iterations. (The ellipse passes
roughly through the outermost sticky points of figure 2.) The orbit enters this ellipse at
irregular intervals, but most of the time it stays outside it. A comparison of figures 1 and
2 shows that this second sticky region is outside the thin sticky layer of figure 1. Figure 2
shows thatwhen the orbit stays inside the ellipsefor an extended period then it stays in the
dark regions of this figure.

3. Noble numbers and cantori

As mentioned in the introduction the most important cantori are those with noble rotation
numbers, i.e.a = [a1, a2, a3 . . .] when ai = 1 for i > N + 1. The numberN is called the
‘order of the noble number’, for example the noble number [2, 1, 1, . . .] is of first order,
while the golden mean [1, 1, . . .] is of order zero.

The sequence of first-order noble rotation numbers is:

[1, 1, . . .] > [2, 1, . . .] > [3, 1, . . .] > · · · > [∞, 1 . . .] = 0.

The second-order noble numbers are between the first-order noble numbers, e.g.

[1, 1, . . .] > 1
2 = [2,∞, 1 . . .] > · · · > [2, 3, 1, . . .] > [2, 2, 1 . . .] > [2, 1, 1 . . .].

Thus all second-order noble numbers with a first digit of 2 are larger than the corresponding
first-order noble number [2, 1, . . .].
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In particular the second-order noble numbers with first digit 1 are larger than the golden
number [1, 1, . . .]:

1= [1,∞, 1 . . .] > · · · > [1, 3, 1 . . .] > [1, 2, 1 . . .] > [1, 1, . . .].

Similarly, the third-order noble rotation numbers are between the second-order numbers,
e.g.

[1, 1, 1 . . .] > [1, 1, 2, 1 . . .] > [1, 1, 3, 1 . . .] > · · · > [1, 1,∞, 1 . . .] = 1
2.

We note that the increase of theseconddigit of the golden number produces alarger number,
while the increase of thethird digit produces asmaller number. Similarly the increase of
the nth digit produces alarger number ifn is even, and asmallernumber ifn is odd.

An important cantorus around the island of figure 1 forK = 5 is the cantorus with
rotation numbera = [2, 4, 1, 1, . . .]. We call this a second-order cantorus. The successive
truncations of the noble numbera = [2, 4, 1, 1 . . .] are

1
2,

4
9,

5
11,

9
20,

14
31,

23
51,

37
82,

60
133,

97
215,

157
348,

254
563, . . . . (4)

Each rational of this sequence has as numerator and denominator the sums of the
numerators and denominators of the two previous rationals. In fact the successive truncations
of any noble number belong to a Farey tree (figure 3). This tree leads to several neighbouring
noble numbers. The sequence leading to the noble number [2, 4, 1, . . .] is marked by arrows.

For every rationaln/m of sequence (4) corresponds at least two periodic orbits. These
orbits are generated from the central periodic orbit (of period 1) in pairs (one stable and one
unstable) at particular valuesKn/m of the perturbation (Poincaré 1899, p 213). The stable
orbits are surrounded by islands.

Figure 3. A part of the Farey tree corresponding to the sequence of rational truncations of
the noble number [2, 4, 1, 1, . . .] and of the higher-order noble numbers [2, 4, 1, 1, q,1, . . .],
q = 2, . . . ,6.
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Figure 4. Some islands and periodic orbits around the noble cantorusa = [2, 4, 1, 1 . . .]. Orbits
97

215 (squares) and157
348 (full circles).

As the perturbationK increases, the periodic orbits appear with increasing values of
their rotation number. Thus, the orbit4

9 is generated at the valueK4/9 = 4.8765, the orbit5
11

is generated at the valueK5/11 = 4.9117, and all the orbits of higher order in the sequence
(4) after 5

11 are generated at values ofK betweenK4/9 andK5/11.
As the order of truncation increases the set of points of the periodic orbit approaches

closer and closer the corresponding cantorus. In figure 4 we see some islands from sequence
(4). Namely we see the islands511 and 14

31 inside the cantorus and the island920 outside the
cantorus. We also see the periodic orbits97

215 (squares) inside the cantorus, and157
348 (black

dots) outside the cantorus. These periodic orbits are very close to the cantorus. For example,
most black dots (orbit 348) are inside the squares of the orbit 215 (not at their centres of
course). Only four dark dots are slightly outside the line defined by the sequence of squares.
As the value ofK increases, the stable periodic orbits become unstable generating also new
families of periodic orbits. For a value ofK larger than the critical valueKc at which a
cantorus is formed all the periodic orbits close to the cantorus are unstable.

Figure 5 shows part of figure 4 in greater detail. Namely, we see the islands9
20 and 23

51

outside the cantorus, and14
31 inside the cantorus. (The island32

71 does not belong to sequence
(4).) We mark also the periodic orbit254

563 (black squares), which is extremely close to the
cantorus.

Figure 6 gives the overall structure of the periodic orbits97
215 (white squares) and157

348
(black dots). These orbits are in the sticky (black) region of figure 1 and just inside the
inner boundary of the outer sticky region of figure 2. In the scale of figure 6 all the dots
are inside the squares. Thus, although the orbit97

215 is inside the cantorus and the orbit
157
348 outside it, they are not separated in the scale of this figure. The separation of the
periodic orbits corresponding to the various truncations of the noble number is seen in
greater detail in figure 7. The periodic orbit254

563 is very close to the periodic orbits60
133, 97

215,



Stickiness and cantori 8173

Figure 5. A closer neighbourhood of the cantorusa = [2, 4, 1, 1, . . .], including points of the
periodic orbit 254

563 (full square).

Figure 6. The periodic orbits 97
125 (empty squares) and157

348 (full circles) are very close to the
cantorusa = [2, 4, 1, 1, . . .].

and 157
348. In particular, the orbits60

133 and 157
348 (outside the cantorus), taken together, define

some gaps and the orbit254
563 (inside the cantorus) defines essentially the same gaps. (Most

prominent are two large gaps above and below the point (x = 0.6433,y = 0.3595).) Thus
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Figure 7. Periodic orbits very close to the cantorusa = [2, 4, 1, 1, . . .]. 60
133 (triangles) 97

215

(squares),157
348 (circles) and254

563 (stars).

there is a tendency of the set of periodic orbits to approach a limit, namely the cantorus
[2, 4, 1, 1, . . .]. We stress the fact that in figure 7 no point of the orbit254

563 lies in the gaps
defined by the lower-order orbits. Thus the gaps seen in figure 7 belong to the cantorus
and are not expected to be filled by higher approximations of the cantorus. This fact is
important when calculating the lobes of the asymptotic curves that pass through these gaps
and produce the observed diffusion through the cantorus (see section 6).

4. Size of the islands

As the nonlinearityK increases, the stable and unstable periodic orbits, generated at the
centre of the main island, move outwards. At the same time the KAM curves of given
rotation numbers move outwards. But these KAM curves are destroyed and form cantori.

Thus asK increases we have two competing effects that affect the size of the main
island. On one hand, the expansion of the tori with given rotation number and on the other
hand, the destruction of the outer tori. The size of the island decreases in the long run (for
large variation ofK), but this decrease is not smooth, and sometimes it is interrupted by a
temporary increase of the size of the island.

The decrease is abrupt when a torus, closely surrounding a set of large secondary islands,
becomes a cantorus and the large outer chaotic domain joins the region around the islands
and separates them from the main island. An example is given in figures 8(a) and (b). In the
first case (K = 4.79) the five secondary islands2

5 are inside a closed torus belonging to the
main island. Between the five secondary islands there are five points representing a period-5
unstable periodic orbit, and these points are followed by a chaotic domain, that surrounds
all five islands, but does not communicate with the outer large chaotic sea, because of the
existence of a separating torus with noble rotation number [2, 1, . . .]. However, forK = 4.8
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Figure 8. The set of five islands around the main island. This is surrounded by a torus around
the centre for (a) K = 4.79, but it is separated from the main island for (b) K = 4.8.

this noble torus has been destroyed (it has become a cantorus) and the inner chaotic domain
communicates with the outer chaotic sea. As a consequence the size of the main island
decreases abruptly by a large jump.

WhenK increases further, the expansion of the invariant curves dominates over the
destruction of the outer invariant curves, and the size of the main island increases. This
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Figure 9. Islands and parts of tori and of the large chaotic sea surrounding the main island, for
K = 4.996.

can be seen if we compare figure 8(b) (for K = 4.8) with figure 1 (forK = 5). The main
island of figure 1 is larger than the one of figure 8(b).

However, asK increases further, the main island shrinks and forK = 7 it has
disappeared.

5. Sequence of formation of cantori

The question is now: What is the sequence of the destruction of the various noble curves,
and the formation of the corresponding cantori?

In figures 9 and 10 we show a region near the outer boundary of the main island for
K = 4.996 andK = 4.997 respectively.

In figure 9 we see the islands with rotation numbers9
20, 14

31, 23
51, 32

71, 41
91, 50

111, 59
131. In

between these rational numbers are the noble numbers [2, 4, 1, 1, q,1, . . .], q = 1, 5 in the
sequence:

14
31 > [2, 4, 1, 1, 1, 1, . . .] > 23

51 > [2, 4, 1, 1, 2, 1, . . .] >
32
71 > [2, 4, 1, 1, 3, 1, . . .] > 41

91 > [2, 4, 1, 1, 4, 1, . . .] >
50

111 > [2, 4, 1, 1, 5, 1, . . .] > 59
131.

A careful examination of figure 9 shows that the noble torus [2, 4, 1, 1, 5, 1 . . .]
has been destroyed into a cantorus, but the tori [2, 4, 1, 1, 4, 1 . . .], [2, 4, 1, 1, 3, 1 . . .],
[2, 4, 1, 1, 2, 1 . . .] etc, still exist. On the other hand, in figure 10 we see that the tori
[2, 4, 1, 1, 4, 1 . . .], [2, 4, 1, 1, 3, 1 . . .] have been destroyed, but the tori [2, 4, 1, 1, 2, 1 . . .],
[2, 4, 1, 1 . . .] etc, still remain.

Thus, asK increases, it seems that the chaotic zone increases only from the outer side
inwards, destroying the corresponding noble tori of the sequence [2, 4, 1, 1, q,1 . . .] one by
one with decreasingq.
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Figure 10. As in figure 9 forK = 4.997. The tori with rotation numbers [2, 4, 1, 1, 4, 1, . . .] and
[2, 4, 1, 1, 3, 1, . . .] have been destroyed (have become cantori), but the tori [2, 4, 1, 1, 2, 1, . . .]
and [2, 4, 1, 1, . . .] still exist.

However, it is probable that this consecutive destruction inwards no longer applies for
even higher-order noble tori. The reason is as follows. Before the destruction of a certain
noble torus, the resonances corresponding to its successive truncations on the inner side
contain chaotic zones that destroy higher-order noble tori inside the given torus.

This phenomenon is evident when we have resonant zones with large islands, and large
chaotic zones between them, and this happens for relatively low-order noble tori.

Such an example is shown in figures 11 and 12. These figures contain a region near
the outer boundary of the main island for values ofK = 4.791 (figure 11) andK = 4.793
(figure 12).

In both cases we see a large inner chaotic layer around the unstable points2
5. This layer

surrounds the main island and the five islands2
5. However, it does not communicate with

the outer chaotic sea, lying beyond the region around the noble rotation number [2, 1, . . .].
The torus [2, 1, . . .] existed forK = 4.79 but has been destroyed forK = 4.791 and has
been transformed into a cantorus. In fact other tori, just inside the cantorus [2, 1, . . .], form
a boundary layer, still separating the chaotic layer2

5 from the large outer chaotic sea. Such
tori are [2, 1, 1, 2, 1, . . .], [2, 1, 1, 3, 1, . . .] and [2, 1, 1, 4, 1, . . .] (figure 11).

In figure 11 we see that the torus [2, 1, 1, 5, 1, . . .], on the outer boundary of the inner
chaotic layer, has been destroyed into a cantorus (for a somewhat smaller value ofK). But
as we compare figures 11 and 12, we see that the tori of figure 11 [2, 1, 1, 2, 1, . . .] on the
outer side of the boundary layer and [2, 1, 1, 4, 1, . . .] on the inner side of this boundary
layer, have been destroyed in figure 12, and only the torus [2, 1, 1, 3, 1 . . .] still exists (and
some higher-order noble tori also). But forK = 4.794 the noble torus [2, 1, 1, 3, 1, . . .] has
been also destroyed and the chaotic layer close to2

5 communicates with the outer chaotic
sea.

Thus the destruction of the boundary layer separating the chaotic layer2
5 from the outer
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Figure 11. Islands and parts of tori, surrounding the main island forK = 4.791. We mark also
the large chaotic sea, and a chaotic domain around the unstable orbit2

5 .

Figure 12. Same as in figure 11 forK = 4.793.

chaotic sea proceeds both from outside and from inside. It is obvious that in this case the
noble tori [2, 1, 1, q,1, . . .] are not destroyed sequentially asq increases from 1 to 5. We
have first the destruction of the noble torus withq = 5, then those withq = 1, q = 4 and
q = 3.

The destruction of tori with even higher values ofq has started even before the
destruction of the noble torus [2, 1, 1, . . .] that hasq = 1.
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Thus the increase of the chaotic sea and the eventual destruction of all tori of the main
stable island proceeds in steps as follows. For any givenK chaotic layers appear near each
unstable periodic orbit inside the last KAM curve (the last torus around the centre of the
island). AsK increases these chaotic layers increase in size. This phenomenon is most
conspicuous near the lowest-order resonances, where we have also the largest secondary
islands inside the last KAM curve (like the five islands of figure 8(a)). The increase of the
size of the chaotic layer is followed by the destruction of tori surrounding the main island
(like [2, 1, 1, 5, . . .] of figure 11), and also of tori surrounding the secondary islands (the
five islands of figures 8(a) and 11). AsK increases further, the tori separating the chaotic
layer from the chaotic sea are destroyed, both from the outside and inside. When the last
KAM torus in the separating region (e.g. the torus [2, 1, 1, 3, 1, ..] of figure 11) is destroyed,
the large chaotic sea communicates with the chaotic layer. Then the last KAM around the
main island recedes abruptly to a region inside the chaotic layer (inside the layer2

5 in the
above case).

This procedure is repeated again and again. After the destruction of the tori surrounding
the layer of islands2

5 we have the destruction of the tori surrounding the layer around3
7

etc.

6. Asymptotic curves and crossing of the cantori

As stated in the introduction, the best way to study the diffusion through a cantorus is by
calculating the asymptotic curves that cross the cantorus. In fact the asymptotic curves of
unstable periodic orbits form barriers that cannot be crossed by other orbits. Thus, only
when the asymptotic orbits themselves cross the cantorus can we have diffusion from one
side of the cantorus to the other.

Figure 13 gives, to our knowledge, the first numerical example (non-schematic) of
the crossing of a cantorus by an asymptotic curve from the inner to the outer side. The
asymptotic curve belongs to the unstable manifold of the unstable periodic orbit97

215 (stars)
which is inside the cantorus. This is one of the orbits that turned unstable from stable
asK increases. The asymptotic curve starts at the pointO (x = 0.643 319 077 512 8180,
y = 0.361 652 219 858 0102) just above the middle of the figure, downwards. After one
oscillation inside the cantorus in the lower left of the figure, the asymptotic curve returns
just to the right of the original point and forms a lobe upwards that passes clearly out of the
cantorus. Then it returns downwards further to the right of the original point and continues
upwards, forming oscillations further outside the cantorus. It returns once again inside the
cantorus, but continues upwards outside it.

In order to make sure that the asymptotic curve has crossed the cantorus we mark by
squares the periodic orbit157

348 which is outside the cantorus. It is clear that in the lower left
of figure 13 the asymptotic curve is below the stars and the squares, while in the upper part
of the figure most of the lobes are above and to the left of both orbits (stars and squares).

The unstable asymptotic curves of other unstable periodic orbits further inside the
cantorus cannot cross the unstable asymptotic curve of the orbit97

215. They can cross the
cantorus only by remaining inside the lobes of the orbit97

215. For example we have calculated
the asymptotic curves of the orbit14

31 which also crosses the cantorus [2, 4, 1, 1 . . .], like the
asymptotic curve97

215. However, we need a long time (hundreds of oscillations) until the
lobes of the orbit14

31 go outside the cantorus.
The best way to find the crossing of the cantorus is by calculating the asymptotic curves

of periodic orbits very close to it. The reason is that very close to the cantorus the high-
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Figure 13. The crossing of the cantorus [2, 4, 1, 1, . . .] for K = 5 by an unstable asymptotic
curve of the periodic orbit97

215 (stars). The squares belong to the orbit157
348. The asymptotic

curve starts at the pointO downwards, inside the cantorus, but after some oscillations it passes
outside the cantorus upwards. Some islands are also marked.

order islands of stability have been destroyed (the stable orbits have become unstable). On
the other hand, further away from the cantorus there are still many islands of stability (see
figure 13) and the asymptotic curves of periodic orbits even further away must approach
the cantorus region by circumventing the various islands, as they cannot cross them.

If we continue the asymptotic curve beyond the loop AB of figure 13, it makes several
oscillations back and forth (figure 14) close to the cantorus, crossing it many times inwards
and outwards. Only after some more oscillations the asymptotic curve is detached from the
cantorus outwards and fills the large chaotic sea. In particular, a part of the lineAB in
figure 13 after two more iterations gives a curve that makes oscillations far away from the
island into the chaotic domain (figure 15).

If the perturbation parameterK is smaller thanK = 4.998, the cantorus is still a torus
and diffusion though it is impossible. All the asymptotic curves of the unstable orbits inside
it remain inside forever.

On the other hand, ifK is larger, two effects facilitate the diffusion through the cantorus:
(a) the gaps of the cantorus become larger, and (b) the islands of stability are destroyed in
a larger region around the cantorus. Furthermore, the orbits are much more unstable. As an
example we compare the unstable periodic orbit97

215 for K = 5 andK = 5.002. In the first
case, the eigenvalue isλ ≈ −190 while in the second caseλ ≈ −11 670. The part of the
asymptotic curve shown in figure 13 contains four mappings of the initial segment which is
of length 10−10. This length is approximately 10−10×(190)4 = 0.13. On the other hand, the
same initial length forK = 5.002 is mapped to a total length 10−10× (11 760)4 = 2× 104

(figure 16). This length covers the whole phase space 104 times. In figures 13 and 16 we
have marked the four images of 105 points along the initial segment 10−10. In the first case
the images are so close to each other that they give the impression of a continuous curve.



Stickiness and cantori 8181

Figure 14. Part of figure 13 in greater detail and for a longer length of the asymptotic curve.
The periodic orbits of multiplicities 215, 348 and 563 are marked with stars, squares and
triangles respectively. The asymptotic curve passes throughA andB (see figure 13) and then
makes several oscillations outside and inside the cantorus (defined approximately by the periodic
orbits).

Figure 15. The image of a part of the lineAB of figure 13 after two more iterations goes very
far from the island into the chaotic domain starting at the pointQ. The two main islands are
also marked.

However, in the second case the successive points are scattered, because the eigenvalue is so
much larger. Only the region close to the right island is dark, due to the effect of stickiness,
which is still present in this case. But many points are in the large chaotic sea far from the
sticky domain, although the asymptotic curve enters this domain a large number of times.
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Figure 16. WhenK = 5.002, the points on the asymptotic curve of the orbit97
215 as in figure 13

(K = 5) are now filling the whole phase space. The initial point isO.

7. Different sticky regions

In our previous paper (Contopouloset al 1997) we described the exponential, or
superexponential, dependence of the stickiness (or escape) time on the distance of an initial
point of the sticky region from the island of stability. The stickiness time in the main
sticky region is usually at least 103–104 periods, but closer to the island it goes above 108.
However, further away from the island there are secondary regions where there is some
stickiness that lasts 102–103 periods, and in exceptional cases even longer. In figure 17
we give the stickiness time as a function ofx, along the liney = 0.36. We see the main
sticky region and a heavy curve giving the exponential dependence. If we extrapolate this
line to the left it reaches the level 10 iterations at aboutx = 0.642. However on the left
of this value we see two features. (a) Extended level lines that correspond to constant low
stickiness time of a few times 10, or even less than 10. (b) Regions of relatively high
stickiness time, usually between 102 and 103. If we magnify one such region (figure 18(a),
from x = 0.6322 tox = 0.6332) we see that it separates again into flat regions of constant
and relatively low escape time, and regions of high escape time. If we make successive
magnifications of one subregion of high escape time of figure 18(a) (figure 18(b), from
x = 0.6331 tox = 0.633 14, and figure 18(c) from x = 0.633 127 tox = 0.633 128 we see
a self-similarity in the separation of regions of high and low escape time. It is thus obvious
that the regions of high escape time have a fractal structure.

We have found that the regions of secondary stickiness are defined by the stable
manifolds of unstable periodic orbits in the sticky region. In figure 19 we mark the
stickiness time as a function ofx for various parallel lines of differenty, from y = 0.3505
to y = 0.3595, each separated from the next by1y = 0.001. The logarithm of the
stickiness time is shown on the right of the figure from 0 to 5 (each level line 5 is 0 for
the next value ofy). Superimposed in this figure we see the stable asymptotic curves of
the unstable periodic orbit49 which appears in the sticky region a little outside the cantorus
a = [2, 4, 1, 1, . . .]. We notice that the lines of the stable manifold separate the regions of
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Figure 17. Secondary stickiness regions far from the main island of stability along the line
y = 0.36. The main sticky region (where the stickiness time reaches 108 or more periods) is on
the right ofx = 0.642. The heavy curve in this region represents the exponential dependence of
the stickiness time on the distance from the island. But further to the left we see many secondary
sticky regions, separated by regions of relative low and almost constant stickiness time.

high and low stickiness time.
The asymptotic curves of figure 19 are extended over a larger part of the phase space

in figure 20. We see that the regions of low stickiness time of figure 19 are connected with
the large chaotic sea beyond the stickiness domain.

In particular, region A of figure 19 is directly connected with the large chaotic sea at
its lower left (figure 20) and escape through this opening is quite fast. Regions B and C of
figure 19 also communicate with the large chaotic sea through openings below the lower
centre of figure 20 to the left. Similar communications also exist for the other regions of
figure 19 that have low and almost constant stickiness time.

In contrast, the orbits in the regions of figure 19 that have relatively high stickiness time
(varying widely with x) are trapped in the stickiness domain and escape with difficulty.
These orbits do escape from the stickiness domain, but only after a much longer time than
the orbits in regions A, B, C etc. Only the orbits that are exactly on the stable asymptotic
curves are trapped there forever. However, the measure of these orbits is zero.

The regions of relatively low and high stickiness time are also distinguished by the fact
that their spectra of stretching numbers (a) are respectively wide and narrow (Contopoulos
and Voglis 1996). This phenomenon will be studied in a future paper.

8. Conclusions

We found the form of the sticky regions around an island of stability, and their relations to
the cantori surrounding these regions, and to the asymptotic curves of periodic orbits close
to the cantori.

The most important cantori are those with noble rotation numbers. These can
be approached closely by higher-order periodic orbits, corresponding to the successive
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Figure 18. (a) One feature of figure 17, seen in greater detail. We see again a structure of local
maxima in the stickiness time, separated by regions of low and almost constant stickiness time.
(b), (c) Successive magnifications of one subregion of local maximum of (a).

truncations of the noble numbers.
The main conclusions of our study are as follows.
(1) The size of an island depends on the type and the size of the last KAM curve

around it. As the perturbationK increases the size of a given KAM curve (torus) increases.
However, at the same time the outer KAM curves are destroyed (they become cantori).
Thus, in general the size of an island decreases withK, but it may increase for some
intervals ofK.

(2) We have found the sequence by which the noble tori are destroyed asK increases
in specific cases. In general the destruction proceeds from the outside inwards (towards the
centre of the island). However, higher-order noble tori are also destroyed near resonances
inside the last KAM curve. Thus the destruction of tori near the last torus proceeds both
from outside and inside. As a consequence, when this last KAM torus is destroyed the size
of the island decreases abruptly.

(3) The diffusion through cantori can be accurately determined by following the
asymptotic curves of nearby unstable periodic orbits. This is a deterministic, non-
probabilistic, process.

We give the first (to the best of our knowledge) exact example of the crossing of a
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Figure 19. As in figure 17 for various values ofy, together with the stable asymptotic curves
of the unstable periodic orbit49 .

Figure 20. Asymptotic curves of the unstable periodic orbit4
9 , extending over a larger area

than in figure 19 (the area of figure 19 is marked as a parallelogram in this figure). Regions A,
B, C communicate with the large chaotic sea.

cantorus by an asymptotic curve of an unstable periodic orbit inside it. The asymptotic
curve, after a number of oscillations inside the cantorus, crosses the cantorus several times
outwards and inwards, remaining close to the cantorus for a long time. Later the oscillations
grow in size and the asymptotic curve goes to large distances.

(4) The asymptotic curves of orbits further inside the cantorus have more difficulties
in crossing the cantorus because near the cantorus there is a layer of islands of stability
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of higher-order periodic orbits. However, eventually the asymptotic curve approaches the
cantorus and crosses it, following closely the asymptotic curves of orbits closer to the
cantorus (because these asymptotic curves cannot be crossed).

(5) As the perturbation increases, three effects make diffusion easier: (a) the sizes of the
gaps of the cantorus increase; (b) most stable periodic orbits around the cantorus become
unstable, and (c) the eigenvalues of the unstable periodic orbits become larger.

Thus, for a modest increase of the perturbationK we have an abrupt increase in the
diffusion.

(6) In the main sticky domain around an island, the stickiness time depends exponentially
on the distance from the island (and superexponentially very close to the island). But there
are more sticky domains where an orbit is trapped for some not very long time. The structure
of these secondary sticky domains depends on the forms of the stable asymptotic curves of
nearby unstable periodic orbits.

Orbits exactly on the stable asymptotic curves never escape again. But there are also
regions close to these stable curves from which escape is relatively slow.
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